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Along with the study of brain activity evoked by external stimuli, an increased interest
in the research of background, “noisy” brain activity is fast developing in current
neuroscience. It is becoming apparent that this “resting-state” activity is a major factor
determining other, more particular, responses to stimuli and hence it can be argued
that background activity carries important information used by the nervous systems
for adaptive behaviors. In this context, we investigated the generation of information
in ongoing brain activity recorded with magnetoencephalography (MEG) in children
with autism spectrum disorder (ASD) and non-autistic children. Using a stochastic
dynamical model of brain dynamics, we were able to resolve not only the deterministic
interactions between brain regions, i.e., the brain’s functional connectivity, but also the
stochastic inputs to the brain in the resting state; an important component of large-scale
neural dynamics that no other method can resolve to date. We then computed the
Kullback-Leibler (KLD) divergence, also known as information gain or relative entropy,
between the stochastic inputs and the brain activity at different locations (outputs) in
children with ASD compared to controls. The divergence between the input noise and
the brain’s ongoing activity extracted from our stochastic model was significantly higher in
autistic relative to non-autistic children. This suggests that brains of subjects with autism
create more information at rest. We propose that the excessive production of information
in the absence of relevant sensory stimuli or attention to external cues underlies the
cognitive differences between individuals with and without autism. We conclude that the
information gain in the brain’s resting state provides quantitative evidence for perhaps the
most typical characteristic in autism: withdrawal into one’s inner world.
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INTRODUCTION
Neuroscience has traditionally focused on the investigation of
stimulus-induced activity, whereas spontaneous activity has been
considered as noise or background activity of little consequence.
However, this view is rapidly changing due in part to empirical
evidence indicating the fundamental importance of background,
“noisy” activity in the brain for the processing of sensory inputs.
Indeed, the brain never rests, for it is constantly receiving inputs,
either from the outside or from the body, and even in periods
of slow wave sleep the thalamocortical networks display impor-
tant, coordinated activity. Even when external sensory stimuli
are minimized, as in sensory deprivation experiments, the brain
responds creating its own world of hallucinations (Sireteanu et al.,
2008). Thus, cognitive states in the “idle” brain are not passive
and perhaps represent the best opportunity to study the func-
tional connectivity (a term much used these days and perhaps
many times abused) of the brain (Galán, 2008; Ringach, 2009;
Papo, 2013).

There is a current debate in the autism field about the possible
differences in brain connectivity that manifest in the special cog-
nitive style of autistic individuals. In particular, it has been argued

that autistic brains are more “disconnected” than those indi-
viduals without autism, notion derived mainly form metabolic
brain measures like PET or fMRI (Herbert, 2005; Kennedy and
Courchesne, 2008; Monk et al., 2009; Thai et al., 2009). Distinct
patterns of synchronization of electroencephalographic or mag-
netoencephalographic (MEG) signals between individuals with
and without autism spectrum disorder (ASD) have also been
reported (Murias et al., 2007; Pérez Velázquez et al., 2009; Tsiaras
et al., 2011; Teitelbaum et al., 2012). As for anatomical features
that could underlie possible differences in functional connectivity
and thus brain coordination dynamics, alterations in the frontal
cortex have been noted in autism, and particularly, an abnor-
mal spatial organization in the microglial-neuronal components
(Morgan et al., 2012). Recent studies with difusion tensor imag-
ing have also revealed white matter abnormalities in autism, in
particular, a possible atypical lateralization in some white matter
tracts of the brain and a possible atypical developmental trajec-
tory of white matter microstructure in persons with ASD (Travers
et al., 2012).

Recently, based on the notion that brain activity at rest can be
accurately described using stochastic linear dynamics, we used a
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multivariate Ornstein-Uhlenbeck process (mOUP) to investigate
brain dynamics from MEG recordings in ASD and non-ASD indi-
viduals (García Domínguez et al., 2013). This method allowed
us to estimate not only the functional connections at the sen-
sor level but also the inputs driving the network. Functional
connections account for the covariance and lagged correlations
between signals recorded from different areas. Inputs reflect con-
tributions to the variance of the recorded signals (outputs) that
are not accounted for by the covariance with other signals in
the network of sensors. Our results indicated that the dominant
connectivity change in ASD relative to controls shows enhanced
functional excitation between frontal and parietal/occipital areas.
Moreover, the stochastic inputs driving the background activ-
ity in the resting state showed a greater spatial homogeneity in
ASD than in control individuals, and indeed the spatial com-
plexity of the background noise was significantly lower in ASD
subjects. We speculated that higher long-range spatial correla-
tions in the background noise may result from less specificity
(or more promiscuity) of thalamo-cortical projections (García
Domínguez et al., 2013). All these observations suggest that it
may not be a matter of less connectivity in autism, but of changes
in connectivity between specific areas as well as in the inputs.
As a note of caution, one must bear in mind that in the afore-
mentioned studies with MEG, PET, or fMRI the complex relation
between macroscopic recordings and the underlying neuronal
activity remains to a certain extent undetermined, so “connec-
tivity” changes are to be understood in a functional rather an
anatomical or physiological sense.

The differences found in previous studies on brain coor-
dination dynamics in ASD suggest that information process-
ing/production could be different as well, for it is the coordinated
activity of transiently formed neuronal assemblies that under-
lie information processing and cognition (Flohr, 1995; Bressler
and Kelso, 2001; Kelso, 2008; Pérez Velázquez and Frantseva,
2011). Thus, in this study we investigated whether the production
of information in periods of little sensory perturbation (resting
state) could differ between individuals with and without ASD.
As a measure for information production we used the Kullback-
Leibler divergence (KLD) between the brain’s inputs and outputs.
The KLD is also known as information gain or relative entropy
(Ihara, 1993) and quantifies differences between two distribu-
tions. In our case, the distributions are the probability density of
the stochastic inputs driving the brain’s activity and the proba-
bility density of the brain’s activity itself, as recorded with MEG
(outputs). We found an increased divergence in children with
ASD compared to controls in the resting conditions in which the
MEG recordings were taken, and conjecture that this enhanced
information gain could be related to one of the most typical
characteristics in autism as described already in the early days of
autism research: the withdrawal into one’s inner world.

METHODS
PARTICIPANTS AND MAGNETOENCEPHALOGRAPHIC RECORDINGS
Data were drawn from a larger sample of children enrolled in pre-
vious studies (Pérez Velázquez et al., 2009; Teitelbaum et al., 2012;
García Domínguez et al., 2013). In total, MEG data from 19 chil-
dren, 9 with Asperger’s syndrome and 10 age-matched control

children, were analyzed. Age range was between 6 and 14 years
for the controls (mean: 11.2 years; standard deviation: 2.6 years)
and between 7 and 16 for ASD (mean: 10.8; standard deviation:
3.5). The 9 children with Asperger’s syndrome were males while
the 10 controls were 6 males and 4 females. We note, however,
that boys and girls in the control group were not different from
each other in terms of our analysis, as shown in our previous
study (García Domínguez et al., 2013). The children’s parents pro-
vided written consent for the protocol approved by the Hospital
for Sick Children Research Ethics Board. Participants, who were
evaluated by the psychologists in the Autism Research Unit of
the Hospital for Sick Children or were recruited from the Geneva
Center for Autism and Autism Ontario, met the criteria for ASD
based on DSM-IV. Age-matched control children had no known
neurological disorders.

MEG recordings were acquired at 625 Hz sampling rate, DC-
100 Hz bandpass, third-order spatial gradient noise cancellation
using a CTF Omega 151 channel whole head system (CTF Systems
Inc., Port Coquitlam, Canada). Out of the 151 sensors, we dis-
carded 10 that were not comparable across all patients due to
artifacts or a very low signal-to-noise ratio. Our analysis thus
focused on the recordings from the remaining 141 sensors in
all patients. Subjects were tested supine inside the magnetically
shielded room. Head movement was tracked by measuring the
position of three head coils every 30 ms, located at the nasion,
left and right ear, and movements less than 5 mm were consid-
ered acceptable. Children were instructed to remain at rest during
the recording session that lasted between 30 and 60 s. To facilitate
the involvement of the children in the experiment and minimize
distraction, they were asked to press a button at will with their
right hand a few times during the recording session. For each
child, an epoch of 30 s was taken off for analysis of functional
brain connectivity. All children were awake and had their eyes
open during the experiment. Eye-blinking and muscular arti-
facts have a much larger amplitude than brain activity and are
highly correlated across sensors, so they can be easily identified
and removed using a well-established approach based on a princi-
pal component analysis (Mitra and Pesaran, 1999). In particular,
since the artifacts appear in the first few principal components
exclusively, they are efficiently cleaned out by removing those
components.

MODEL OF FUNCTIONAL CONNECTIVITY AND BACKGROUND NOISE
In the resting state, the non-linear dynamics of the brain reduces
to noise-driven fluctuations around a state of equilibrium, which
corresponds to a stable fixed point in neural-mass models of
brain dynamics that include conduction delays, dendritic integra-
tion and non-linear firing characteristics of neurons (Robinson
et al., 1998, 2001). The presence of background noise does
not allow the system to quench at the fixed point but per-
turbs the system in a continuous manner, so that it fluctuates
around the equilibrium (Galán, 2008). Thus, consistent with
the approach used by several authors (Tononi et al., 1999;
Sporns et al., 2000; Galán, 2008; Barnett et al., 2009; Steinke
and Galán, 2011; García Domínguez et al., 2013), large-scale
spontaneous brain activity is accurately described as a lin-
ear stochastic process that is formally equivalent to a mOUP.
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xi(t + dt) = xi(t) + dt
N∑

j = 1

Wijxj(t) + ηi(t + dt), (1)

where Wij is the functional connectivity matrix, i.e., the cou-
pling between the j-th and the i-th nodes; xi(t) is the neural
activity of the i-th node with respect to baseline, measured
as the signal from the i-th MEG channel at time t; ηiare the
residuals (background, uncorrelated white noise) of the i-th
channel; N is the number of nodes (sensors) and dt is the
sampling interval (1.6 ms). The sign of Wij represents func-
tional excitation (+) or inhibition (−) and should not be
confused with excitatory or inhibitory synaptic connections at
the cellular level. At the macroscopic level of MEG record-
ings, functional excitation and inhibition between nodes result
from a combined effect of myriad processes, including multi-
ple synaptic interactions and action potentials, which cannot be
resolved. The units of Wij are reciprocal of time, i.e., frequency
units.

The functional connectivity matrix Wij can be obtained from
the empirical data xi(t) with the Yule-Walker method for multi-
variate time series (Priestley, 2001). First, equation (1) is written
in vector notation as

�x(t + dt) = �x(t) + W�x(t)dt + �η(t + dt). (2)

Multiplying from the right by �x(t)Tand averaging in time,
denoted by brackets 〈...〉, one has C+ = (I + Wdt) C, with C+ =〈�x(t + dt)�x(t)T

〉
, C = 〈�x(t)�x(t)T

〉
, and I being the identity matrix.

After computing Cand C+from the recordings, the connectivity
matrix is then given by

W = (C+ − C) C−1/dt,

where C−1 is the inverse of C, or its pseudo-inverse if it is rank-
deficient. Once W has been determined, the background noise
driving the network ηi(t) can also be obtained from (2), and their
covariance is computed as Q = 〈�η(t)�η(t)T

〉
. Note that the signals

xi(t) in the resting state have a stable mean (which is negligible
relative to the standard deviation), as shown in Figures 2A,B for
three arbitrary sensors. For system (2), the covariance matrices of
the inputs and outputs are related via (Gardiner, 2004)

Q = −dt
(

WTC + CW
)

, (3)

which allows one to compute Q directly from C and W . This pro-
vides a reality check for model (2): the closer the entries in Q are
to the entries in matrix

〈�η(t)�η(t)T
〉
, the more accurate is model

(2). In our data set, the correlation coefficient between the entries
in both matrices is r > 0.99 (García Domínguez et al., 2013).

A multivariate Gaussian distribution of variable
�u ∈ R

N with mean �m = 〈�u(t)
〉
, and covariance � =〈

(�u(t) − �m) (�u(t) − �m)T
〉
∈ R

N×N is given by

G(�u; �m, �) ≡ 1

(2π)N/2 |�|1/2
exp

(
− 1

2
(�u − �m)T �−1 (�u − �m)

)
, (4)

where |...| denotes the determinant of the matrix inside, or
the pseudo-determinant, if the matrix is rank-deficient. For

mOUP, the stationary distributions of �xand �η are the multivariate
Gaussians, G

(�x; �0, C
)
and G

(�η; �0, Q
)
, respectively.

ENTROPY AND INFORMATION GAIN
We computed the entropy of the inputs as the entropy of the dis-
tribution of �ηand the entropy of the output, as the entropy of
the distribution of �x. To this end, we recall that the entropy of a
multivariate Gaussian distribution (4) with zero mean is given by

H (�u) =
∞∫

−∞
G(�u; �0, �) ln G(�u; �0, �)duN = 1

2
ln |2πe�|

= N

2
(1 + ln(2π)) + 1

2
ln |�| . (5)

So that the entropy of the inputs in (2) is H (�η) = 0.5 · ln |2πeQ|
and the entropy of the outputs is H (�x) = 0.5 · ln |2πeC|.

The KLD of two distributions, also known as the relative
entropy or information gain, measures how much variability
of a stochastic variable �u ∈ R

N with distribution P cannot be
accounted for by a reference distribution Q. It is defined as

D (P||Q) =
∞∫

−∞
P(�u) ln

P(�u)

Q(�u)
duN .

To determine the information gain of a mOUP we computed.

D
(
G(�x; �0, C)||G(�η; �0, Q)

) =
∞∫

−∞
G(�u; C) ln

G
(�u; �0, C

)
G
(�u; �0, Q

)duN

= 1

2

(
trace

(
Q−1C

)− ln
|C|
|Q| − N

)
. (6)

The units of the outcome from expressions (5) and (6) are nats.
We converted those values to bits by dividing by ln(2), and again
by eight to obtain the final result in bytes.

INVARIANCE OF INFORMATION GAIN
An important property of the information gain is that it is invari-
ant under linear transformations. This implies that the “cross-
talk” or mixing of independent source signals does not affect the
information gain. In other words, the information gain measured
at the sensor level is the same as the information gain at the source
level. The mathematical proof is as follows. Recall that model (2)
represents the signal model at the sensor level. Let U denote a
linear transformation that “unmixes” the sensor level signals �x(t)
to obtain the source level signals, �y(t), so that, �y(t) = U�x(t). In
particular, matrix U can be computed with an independent com-
ponent analysis. At the source level, model (2) is transformed
into

�y(t + dt) = �y(t) + V�y(t)dt + �ξ(t + dt)

with V = UWU−1and �ξ(t) = U�η(t). The covariance matrix of
�y(t) is then given by UCU−1 and the covariance matrix of �ξ(t) by
UQU−1. The information gain at the source level is thus

Dsource = 1

2

(
trace

((
UQU−1)−1

UCU−1
)

− ln

∣∣UCU−1
∣∣∣∣UQU−1
∣∣ − N

)
.
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We first note that

trace
((

UQU−1)−1
UCU−1

)
= trace

(
UQ−1CU−1) = trace

(
Q−1C

)
,

due to the invariance of the trace under similarity transforma-
tions. We also note that, since the determinant of the product is
the product of the determinants one has

∣∣UCU−1
∣∣∣∣UQU−1
∣∣ = |U| |C| ∣∣U−1

∣∣
|U| |Q| ∣∣U−1

∣∣ = |C|
|Q| .

Thus, the information gain at the source level becomes

Dsource = 1

2

(
trace

(
Q−1C

)− ln
|C|
|Q| − N

)
,

which is identical with the information gain at the sensor level (6).

RESULTS
Figure 1A displays the arrangement of MEG sensors over the
scalp. We only show the positions of the 141 out of 151 sensors
that were used in all the subjects (as indicated in methods, 10 sen-
sors were left out due to artifacts and/or low signal-to-noise ratios
in different patients). Thus, the dimensions of the functional
brain connectivity matrix for each subject are 141 × 141. The sen-
sors cover the occipital (O), frontal (F), central (C), parietal (P),
and temporal (T) areas. Each ordered pair of sensors (i, j)defines
an entry in the connectivity matrix Wij (Figure 1B), which is
obtained from the data using model (1). Because MEG signals are
most sensitive to cortical activity due to the pronounced decay of
magnetic fields with distance, matrix Wij mainly represents func-
tional connections between cortical areas. A thorough analysis of
the connectivity matrices and their differences in ASD was pre-
sented in our previous study (García Domínguez et al., 2013).
Model (1) also allows one to obtain the inputs to the network,
ηi(t) as explained in Methods. Figure 1C schematically shows
the black-box interpretation of the brain dynamics described by
equation (1), for just three nodes. The stochastic inputs (back-
ground noise), ηi(t) impinge on the nodes of the network, which
in turn affect each other’s activity rate, dxi(t)/dt according to
the connectivity matrix Wij. This determines the instantaneous
activity fluctuations (outputs) recorded from each node, xi(t).
Figure 2A shows traces of ongoing activity recorded with three
arbitrary sensors from one of the children. Only 3 seconds of
the total recording (30 s) are shown. Traces x1 and x2 clearly
display correlated fluctuations between them but not with x3.
Figure 2B shows the histograms of the fluctuations recorded from
each of those three sensors. The fluctuations around the mean
were normalized to the standard deviation of the traces so that the
normalized amplitude is given by the z-score. Clearly, the fluctu-
ations are normally distributed, as demonstrated by the excellent
fit to a Gaussian (red line). The high p-values confirm the null
hypothesis of the chi-square goodness-of-fit test, namely, that the
fluctuations have a normal distribution in each sensor.

Model (1) assumes that the noise is additive and hence state
independent. In such a case, the mean and variance of small seg-
ments of the time series should be independent of each other. To

FIGURE 1 | Inputs and outputs of the cortical network as defined in

our analysis. (A) Spatial arrangement of MEG sensors recording brain
activity from the scalp (outputs). (B) Functional connectivity as a table of
interactions between signals recorded by sensor pairs. (C) Schematic
representation of the brain’s functional connectivity, its inputs and outputs.
Only three nodes are shown.

test this, we divided the traces in successive segments of 500 ms
and plotted the mean over each segment against its standard
deviation (Figure 2C). For all traces, the Pearson’s correlation
coefficient was not statistically significant, suggesting that both
quantities are indeed independent of each other.

Figure 2D shows the stochastic inputs to the three nodes
investigated above, η1, η2 and η3. Compared to the outputs in
Figure 2A, the inputs display no significant temporal structure
and lower amplitudes, which is what one would expect for the
residuals of a parametric model, such as model (1). Figure 2E
shows that the inputs are also normally distributed.

From the connectivity matrix, Wij and the covariance matrix
of the signals, Cij, one can readily obtain the covariance matrix of
all the inputs, Qij, using formula (3) in Methods, without hav-
ing to determine them explicitly. This allows us to efficiently
compute information theoretical measures. Figure 3 shows the
entropy of the inputs and outputs for the control and ASD
groups. The entropy is larger for the outputs than for the inputs
for both groups. However, the differences between both groups
for inputs or outputs are not significantly different (p >> 0.05,
Wilcoxon rank-sum test). We note that the entropy values are
negative. Indeed, while entropy values for discrete signals are non-
negative, the entropy of continuous signals (differential entropy)
may be negative. Negative entropy values result from expression
(5), when |2πe�| < 1. Note that the value of this determinant
depends on the units of the covariance, so our choice of those
units affects the value of the entropy. Moreover, the entropy for
continuous signals is very sensitive to their variance and because
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FIGURE 2 | Activity fluctuations at rest are normally distributed. (A)

Recordings of ongoing activity (3 s long) from three arbitrary sensors in a
control subject. (B) Activity fluctuations have zero mean and are normally
distributed. The histograms were built from segments of 30 s. (C) Over

short segments of the time series (500 ms long) the mean and standard
deviation are uncorrelated, consistently with the assumption of additive
noise. (D) Residuals (inputs) of the model for the traces shown in (A).
(E) The residuals are also normally distributed.

the amplitudes of the activity fluctuations are not significantly
different between control and ASD (data not shown), neither
are the entropies. These are well-known caveats that preclude
the interpretation of entropy (or more accurately, differential
entropy) as a measure of information content for continuous sig-
nals (Ihara, 1993). This contrasts with the case of discrete signals,
for which entropy is legitimately interpreted as the expected value
of information contained in a signal (Ihara, 1993).

A more relevant measure of information that has the same
interpretation and properties for continuous and discrete signals
is the relative entropy, or information gain, defined as the KLD
between two distributions (see Methods). In lay terms, the KLD
measures how much variability of a stochastic variable with dis-
tribution P cannot be accounted for by another stochastic variable
with distribution P′. This interpretation justifies the alternative
name of “information gain” about one variable by knowing the
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FIGURE 3 | Differential entropies of the inputs and outputs. (A) Inputs.
(B) Outputs. There are no significant differences between groups in either
case.

FIGURE 4 | Information gain in the brain’s resting state. (A) Schematic
black-box representation of cortical dynamics in the resting state. (B) The
information gain is significantly increased by 42% in autistic relative to
non-autistic children.

other. In our context, we computed the KLD to quantify the
amount of information of the outputs that cannot be accounted for
by the inputs. In other words, we quantified how much infor-
mation is “created” by the brain in the resting state. Figure 4A
shows a simplified black-box interpretation of the brain, in a sim-
ilar fashion to Figure 1C but for an arbitrary number of nodes
and without paying attention to the details of the brain’s network
contained in the box. The key finding of this article is shown in
Figure 4B, which plots the information gain of the brains in the
control and ASD groups. Despite some overlap between the dis-
tributions, the medians of both groups are significantly different
(Wilcoxon sum-rank test; p = 0.035). In particular, the informa-
tion gain in the ASD group is 42% larger on average, indicating
that ASD brains produce more information from the stochastic
inputs driving them.

In a previous study we identified the subnetwork of sensors
containing the functional connections whose changes in autism
are largest in absolute value and most significant relative to con-
trol (García Domínguez et al., 2013). We then asked whether this
subnetwork on its own can account for the increased information

FIGURE 5 | Main subnetwork contributing to the increased information

gain. (A) Subnetwork containing the largest (in absolute value) and most
significant changes in functional connectivity (left). This subnetwork alone
accounts for a significant increase in information gain in autism (right). (B)

Complementary subnetwork containing the remaining sensors (left). This
subnetwork cannot account for the change in information gain on its own,
as the increase is not statistically significant (right).

gain in autism. Figure 5A displays the sensors belonging to this
subnetwork (left; magenta circles) and the information gain for
this subnetwork in the control and ASD groups (right). The dif-
ference of the medians is 57% and it is statistically significant
(p = 0.017; Wilcoxon rank-sum test). In contrast, if one con-
siders the complementary network, i.e., the other nodes in the
sensors network (Figure 5B, left), the difference of the medi-
ans is 40% but not statistically significant, as it falls below the
95% confidence level (p = 0.053; Wilcoxon rank-sum test). In
conclusion, although all nodes contribute to the information
gain, those nodes encompassing the interactions with the largest
changes in autism contribute more to the increase in information
gain. However, changes in connectivity alone are not sufficient to
account for the difference in information gain that we observe in
ASD, as the information gain depends not only on W via C, but
also on matrix Q, which we know from our previous study that
is also significantly different in ASD (García Domínguez et al.,
2013). The question then is: do changes in W compensate for
changes in Q or do these changes act synergistically to increase
the information gain? Our analysis suggests the latter may be the
correct answer, or at least, that changes in connectivity cannot
fully compensate for changes in the inputs.

DISCUSSION
The term autism (from the Greek autos, meaning “self”) was
coined in 1911 by Swiss psychiatrist Eugen Bleuler, who used it
to describe withdrawal into one’s inner world (even though at this
time he was referring to schizophrenia patients). Later, other stud-
ies defined more precisely the syndrome (Kanner, 1968). The neu-
rophysiological reasons responsible for a certain detachment from
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the environment of individuals with ASD remain unknown, and
several scholars have proposed ideas mostly centered on the psy-
chological level of description. Whereas much brain structural
and genetic studies are being done in autism research, the investi-
gation of the brain dynamics is lagging considerably behind. Here,
we have explored what the background brain activity in resting
conditions (when individuals are not presented with specific sen-
sory stimuli) may reveal about the inner processing of the brain in
terms of information production, quantified as relative entropy.
Our analysis of MEG signals recorded at rest indicated that the
brains of individuals with ASD, Asperger syndrome in this case,
produce more information than the age-matched participants
with a 42% increase on average. These significant differences can-
not be attributed to the gender-ratio mismatch in our cohort.
Although there were 6 males and 4 females in the control group,
and no females in the ASD group, the control group was fairly
homogeneous: there were no significant differences in the infor-
mation gain between the boys and girls within the control group
(p = 0.76; Wilcoxon rank-sum test).

We decided to focus on spontaneous brain activity in resting
conditions because the fundamental importance of the ongo-
ing, “noisy” nervous system activity is widely recognized today,
and a more in-depth investigation of brain activity in periods of
minimal sensory perturbation has been advised by several schol-
ars as it may provide the best opportunity to study the intrinsic
connectivity of the brain, in the absence of major sensory per-
turbations (Galán, 2008; Ringach, 2009; Steinke and Galán, 2011;
García Domínguez et al., 2013; Papo, 2013). From an analyti-
cal perspective, there are two important reasons for investigating
brain activity in the resting state. The first one is that in this
case, the brain dynamics are described by stochastic model (1),
which implies that functional connections (Wij) are constant, in
contrast to the stimulated brain, in which interactions between
different areas are state-dependent and typically non-linear. The
second reason is that in the brain’s resting state the stochastic
inputs, ηi, as well as the activity fluctuations, xi (outputs) are
normally distributed. Thus, the distributions of �η and �x are both
N-dimensional Gaussians. This enables an accurate parametric
estimation of the entropies and relative entropy, as shown above.
If the fluctuations are not normally distributed, as it is frequently
the case for stimulus-evoked activity, a parametric estimation of
information theoretical measures is in general not possible. To
compute entropies and related quantities in such cases, one needs
to estimate the probability densities of the data. However, the esti-
mation of high-dimensional probability densities requires very
large datasets, which are virtually impossible to collect in current
experimental settings.

In our study, functional connections between areas and their
inputs are defined operationally from model (1): functional con-
nections account for the covariance and lagged cross-correlations
between signals recorded from different areas, whereas the inputs
are defined as contributions to the variance that are not accounted
for by the covariance with other signals in the network of sen-
sors. Neither the functional connections nor the inputs represent
specific neuronal elements, although they obviously emanate
from them in a complex, undetermined manner. Certainly, a

multiscale modeling approach, from single cells to neural mass
models, is worth attempting. This is, however, a daunting task, as
recognized by other authors working on this problem (Deco et al.,
2008).

There are two important considerations about the dynamical
model used in our study: (1) the suitability of a linear model
for large-scale brain dynamics in the resting state; and (2) the
interpretation of the inputs in the model. As for the first con-
sideration, we note that there is no contradiction between our
stochastic linear model and the fact that brain dynamics are
strongly non-linear because we do not intend to model neu-
ronal dynamics per se. We are rather modeling the recorded
signals, which are magnetic fields that do superimpose linearly.
An analog dichotomy takes place in weather forecasting: although
the dynamics of air masses are turbulent, chaotic and therefore,
unpredictable, when considered over a large area the flow of
air masses becomes predictable within a time window of a few
days. These coarse dynamics of air masses fit very well a lin-
ear multivariate stochastic process, which can then be used to
accurately forecast variations and co-variations of air pressure
and temperature at different locations (Storch and Zwiers, 2001).
Similarly, in neural mass models the strong non-linear dynam-
ics of single neurons, when averaged over a fairly large spatial
range, display fluctuations around a mean that make a stochas-
tic linear model suitable for the description of large-scale activity.
As noted by Nunez and Srinivasan, “the question of brain linear-
ity depends on context and the level [. . . ] addressed [. . . ]. It is
only in mathematics that a sharp distinction exists between lin-
ear and non-linear system” (Nunez and Srinivasan, 2006). We
also note that non-linear neuronal networks, like those based on
the celebrated Wilson-Cowan model and the neural-mass mod-
els frequently possess hyperbolic fixed points which are linearly
stable. The brain’s resting state we record from corresponds to
this kind of stable state, as shown in Figures 2A,B, in which base-
line activity is characterized by fluctuations around a fixed mean.
Indeed, linearization of neural-mass dynamics around a hyper-
bolic fixed point leads to model (2) when stochastic perturbations
are included. Several recent papers have taken advantage of this
fact to investigate the link between connectivity and spontaneous
activity patterns in a neural network model (Galán, 2008; Barnett
et al., 2009; Steinke and Galán, 2011; García Domínguez et al.,
2013). Outside the resting state, during sensory stimulation, brain
activity typically has a moving baseline, or low frequency modula-
tion of the fluctuations, which results from the non-linear regime
of the neural-mass dynamics, and therefore, it is inconsistent with
model (2). That is the reason why our model should only be
applied to brain activity in the resting state.

As for the interpretation of the inputs in our model, we remark
that subcortical structures relay inputs to the cortex and prob-
ably more (if these could be quantified) than those from the
external sensorium, which with the exception of the olfactory
system are filtered through the thalamus. Our model considers
both sources of fluctuating inputs together: those coming from
the external world and those from internal organs are similar for
our purposes because the other organs are, after all, external to
the brain too, so they are all just inputs. Regarding this matter of
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differentiating internal vs. external inputs, we find the thoughts by
Nachev and Husain quite appealing; in their words “the contrast
between internally and externally-generated actions is empirically
intractable” (Nachev and Husain, 2010).

Large-scale recordings, such as MEG traces, have some limi-
tations to keep in mind (Gross et al., 2013). The signals detected
by MEG reflect population-scale levels of activity in large neu-
ronal networks. Insights gained from the analysis of MEG data are
limited to coarse relationships between large populations of cells
rather than the detailed understanding of interactions between
individual cells. Moreover, spontaneous activity at any given sen-
sor may contain activity from multiple distributed sources, and
conversely, the activity of a single signal source can introduce
coordinated changes at multiple sensors. For these reasons, func-
tional connectivity estimated from signals recorded by the sensors
does not necessarily reflect the actual connectivity between the
brain areas next to where the sensors are located. Thus, a dis-
tinction between sensor-level and source-level connectivity is
pertinent to MEG but also to all technologies for measuring
large-scale brain connectivity that are currently available. Ideally,
connectivity analysis should be performed at the source level.
However, source reconstruction clearly adds another level of com-
plexity to the analysis and may even yield spurious results, as it
is an ill-posed mathematical problem (Gross et al., 2013). This
implies that assumptions must be made about the origin and
location of the sources in order to properly constrain the solution
to the problem. Whereas certain assumptions may be reason-
able for stimulus-driven experiments because specific sensory or
motor areas are expected to be strongly activated, this is not triv-
ial for ongoing activity where no specific areas are expected to
dominate the brain dynamics. Importantly, we have shown here
(see Methods) that the information gain in the brain’s resting state
is the same for the source and sensor levels. Thus, the results
we report here are unaffected by any possible cross-talk between
sensors or mixing of independent source signals at the sensor
level.

When addressing queries on information processing in ner-
vous systems, the question of what is meant by “information”
always arises. There are several different notions about what infor-
mation is and represents, and depending on the research field,
e.g., thermodynamics, cybernetics, information theory etc., one
may come across different definitions. In general terms, however,
the concept of information refers to the ability of a given signal to
encode a message with a presumed alphabet regardless of its con-
tent. That is, the information is agnostic to semantics or meaning.
In plain mathematical terms, the information gain used in this
study is nothing but a measure of the global differences between
the distributions of the input to and output of the brain in its
resting state. It therefore quantifies the degree of transformation of
the inputs into the outputs. Because this transformation is made by
the brain’s network, the information gain can literally be regarded
as the amount of information created by the brain which is not
already present in the inputs.

On a more philosophical level, the general expression “brain
information processing” is commonly used without specific
details as to what this information is, but it serves the purpose

as it relies on certain intuitive knowledge that neuroscientists
share and accept. If, as Heinz von Foerster declared, “informa-
tion is a relative concept that assumes meaning only when related
to the cognitive structure of the observer (the recipient)” (Von
Foerster, 2003), and the activity of the brain cellular circuits
is roughly considered as the production of “novel” associations
between stimuli (external or internal), then perhaps an increase in
the difference between the stochastic input and output, as found
in our work, could conceivably be associated with a more pro-
nounced “mental inner life” that, roughly speaking, may result
in the common detachment of individuals with ASD from their
environment. Perhaps a bit more specifically, following Davies’
recent postulate of two types of information in biological sys-
tems (Davies et al., 2013), structural and functional, it could
be reasoned that in the nervous system the structural informa-
tion derived from direct anatomical connections between cells
is responsible for the maintenance of memory and other spe-
cific aspects that need to be maintained in an stable manner,
whereas functional information, which is what we measured in
our studies, could be related to the rate of cell assembly for-
mation, to the transient establishment of coordinated activity
amongst brain cell networks which is the basis of cognition
(Bressler and Kelso, 2001; Kelso, 2008; Pérez Velázquez and
Frantseva, 2011). As a predecessor of the current conceptualiza-
tion, Hans Flohr already proposed almost two decades ago that
the rate of cell assembly formation determines cognition (Flohr,
1995). A precise investigation of how cell assemblies form and
disappear and the relation between these ephemeral brain func-
tional networks and cognitive/psychological aspects is difficult
to achieve with current methods in brain and cognitive science.
Nevertheless, these types of research encompassing biophysics
and psychological observations, we venture, will be a fundamen-
tal part of the immediate future of neuroscience research. In
fact, with the current theoretical conceptualization of nervous
system dynamics based on dynamical bifurcations that switch
brain/cognitive states in a flexible manner, it is not surprising
that more investigations on the role of background activity in
brain information processing are being conducted at several lev-
els of description (Liljenstrom, 1996; Mcmillen and Kopell, 2003;
Pérez Velázquez et al., 2007; Zhou et al., 2010; Luczak et al.,
2013).

Combining several empirical observations, the picture that
emerges is that a tendency toward enhanced excitatory activity in
the cell circuitry in the autistic brain (Rubenstein and Merzenich,
2003; Han et al., 2012) results in hyperactivity in certain brain
regions (García Domínguez et al., 2013) that in turn enhances the
tendency toward increased synchronous activity in those areas,
e.g., parietal cortices (Pérez Velázquez et al., 2009; Teitelbaum
et al., 2012), which is reflected in greater spatial correlation in
the background activity (García Domínguez et al., 2013) and
in a more pronounced information production from the back-
ground activity, as found in this study. More generally, these
related tendencies toward more than normal excitation and syn-
chronization could underlie most of neurological and psychiatric
disorders (Pérez Velázquez and Frantseva, 2011; Yizhar et al.,
2011). All these neurophysiological differences between autistic
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and non-autistic brains, we propose, could contribute on the
behavioral level to the known withdrawal to their inner world
of individuals with autism. While, at this stage, this is a conjec-
ture, it is perhaps useful to start the never easy attempt of framing
neurophysiological data into psychological aspects. Our study is
intended as an initial step in the investigation of how information
generation in the brain relates to cognitive/psychological aspects
and our results allow us the following speculations. It is notewor-
thy that the subnetwork of sensors that significantly contributes to
the increased information gain in autism (as shown in Figure 5A)
contains a combination of frontal, temporal and parietal areas
which also correspond to the default mode network; the brain
areas that reduced their activations during processing of external
stimuli and are preferentially active when individuals do not focus
on the external world (Buckner et al., 2008). Moreover, this sub-
network contains a number of midline sensors: medial frontal,
central and parietal (Figure 5A). Remarkably, both the default
network and midline brain structures have been proposed to be
fundamental regions for self-processing (Northoff and Bermpohl,
2004), and there are numerous studies that reported the asso-
ciation of activation in parietal and medial frontal cortex in
self-referential processing (Lou et al., 2004; D’argembeau et al.,
2007). Nevertheless, it should be considered that each brain area
is “activated” by other connected nets, which means that these
regions proposed in the literature, while significantly associated
with self-referential processing, receive inputs and integrate their
activity with others possibly subcortical areas (Northoff et al.,
2011). It is also of interest that distinct patterns of synchroniza-
tion in the “default areas” have been noted (Fingelkurts, 2011),
especially an increase in phase synchrony when subjects atten-
tion is internally focused (Kirschner et al., 2012). These previously
reported neurophysiological phenomena in those brain areas may
contribute to the observed differences between the two groups
in the information gain reported in this work, and particularly
the higher information gain in the ASD group could therefore be
related to the more intense “inner world” that autistic individuals
normally have.

Future studies may consider applying our method to other
cognitive phenotypes as well. To interpret information gain in
other contexts one must bear in mind that it explicitly depends on
the inputs and outputs of the resting state network, and implic-
itly (via the output covariance) on the functional connectivity.
Significant changes in information gain must therefore result
from changes in at least one of these measures or, as it is the
case in our study, in all the three measures. One may then ask
whether changes in connectivity tend to compensate for changes
in inputs so that the information gain is barely altered, or whether
those changes act synergistically to exacerbate alterations in neu-
ronal activity and information gain. Finally, to more explicitly
address the relation between information gain and particular psy-
chological traits, it is worth noting that people with schizophrenia
are characterized by excessive self-awareness (Frith, 1979), which
taken to the limit may lead to hallucinations. We surmise that if
our analysis of the brain’s resting state were conducted on peo-
ple with schizophrenia, it would also show a significant increase
in information gain that reflects the ability of the brain to gener-
ate complex activity on its own, even in the absence of significant
stimulation.
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